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Why Personal Finance?

* Personal Finance Savings vs Investing Account
- Wealth management at an individual or 9 9
2005 - 2015

family scale $25,000 $22,832

/
$20,000 Returns: =130%
o Savmg VS. Investlng (vs. Trading) . $15,000 $11.685
- Value investing is the best way for passive = :
g y P ~ $10,000 Returns: =12%

investors looking for good returns
$5,000 /

Risk: 2008 Housing Bubble Burst
'07 '08 '09 "10 "11 12 "13 14 "15

$0
 Focus: Equity — Stocks 05 06
- Choose diverse stocks and build a portfolio « Why Investing Is better than saving
- Return vs. Risk
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How to choose stocks in a portfolio to
maximize returns while minimizing risk
(aka volatility) over a fixed timeframe?

Problem Statement
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Data

« S&P 500 stocks data from 02/2013 — 02/2018

« =~ 500 exchange traded stocks
 Daily Open, High, Low, Close Prices & Volume (OHLCV)

B Date | Name | Open | High | _Low | Close | Volume

2013-02-08  AAPL 67.7142 68.4014 66.8928
One |
stock
2018 -02-07  AAPL 163.085 163.4 159.0685
500 Such_<f
stocks | 2018-02-07  ZTS 72.7 75 72.69

« Custom Feature Engineering
« OHLCV - not sufficient to accurately study trends

» Nonlinear features — Technical Indicators for momentum, volatility, trend, etc.
« Studied ~ 111 indicators used for trading (domain knowledge)
* Implemented ~ 22 indicators out of them which represent macrotrends

67.8542

158168416
51608580

4534912
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Challenges

* Huge Time Series Dataset
- 1200 data points for each stock (5 year data)
- 500 such stocks

* Historical prices alone do not guarantee returns

- News related events influence prices
- Quarterly earnings of companies may be correlated

« Complex interactions between stock returns

- Seemingly unrelated stocks from different industries may vary together
- Randomly picking portfolio stocks from different industries may not reduce risk directly
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Solution Block Diagram
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Prediction in SEEN AAPL data
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RNN Conclusions:
1. Past prices alone cannot predict long term future

2. New information continually affects price significantly

a. company news,
b. policy changes,
c. disaster info

RNN - Long Short Term Mem
(LSTM) neural network

ory

Note: This prediction for 1 year was made at data at beginning

of Feb 2017
(No peeking into the future, Rolling prediction)

* Doesn’t predict long term variations well
» Itis decent for very short term

Iterative Prediction in UNSEEN AAPL data at single start data
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—— Actual_UNSEEN_data
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Apple stock:
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Stock Clustering

» Correlation Minimized Selection Algorithm:

Step 1: Provide a seed stock
Step 2: Perform PCA on the seed stock, store PC1
Step 3: Perform PCA on all other stocks using seed stock as the fitter

Step 4: Find p; = p(PC1geeq, PC1,;) for all i
Step 5: Select stock; such that }; p;;is minimum, (j : stocks already selected)
Step 6: Seed stock = stock;, repeat steps 2 — 5 till ‘n’ stocks selected

* Ensures least correlated stocks are selected based on training data
Sample run with seed stock ‘FB’:

poston |4 ]2 o ] e s e 7 e |0 |0

American Global

SI0El FEEAIEE | 2 Slpen | ek Fiserv OR Auto Acuity Water Payments, Nasdaq, Inc  Ecolab

Selected (seed) Storage, Inc Brands e Inc
Industry Tech Real Estate LGS Finance Industrials el Water Flicles Finance Energy
Staples Estate Tech
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Baseline Model

 Portfolio performance is a (strong) function of weights assigned to each
security

« Minimum variance (risk) portfolio: Markovitz Theory

« Markovitz optimization:

Minimize ~wl T w (risk)
subjectto  m'w = uy (@ minimum return)
and elw=1 (weights summing to 1)

where m,,; is the weight vector, w,,.; is the mean vector, e, «; is the vector of
ones and ), x5 IS the covariance matrix
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Results

Seed = Facebook (NYSE: FB)

Returns
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Results — Other Good Predicted Portfolios
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Conclusions

No ‘right’ portfolio, but most portfolios tested perform better than the underlying stocks in
terms of risk-return compromise.

« The Maximum Sharpe ratio portfolio outperforms others, but at higher risk. The minimum
Value at Risk (95% confidence interval) portfolio is suggested for the average investor.

 Limitations
- No comparable metric to quantify clusters — clustering algorithm is unsupervised
- A predictive model can help in quarterly portfolio rebalancing to have even higher
returns. We tried this using RNNs but couldn’t get good resuilts.

» Feedback for instructors
- The progress reports were well scrutinized and feedback was thoughtful
- The Checkpoints kept the project on track, well organized timeline
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Contribution

« Akhilesh: Feature Generation, Principal Component Analysis, Linear Discriminant
Analysis, KMeans Clustering, LSTM-RNN

« Gowtham: Feature Generation, LSTM-RNN, Hierarchical Clustering, Portfolio
management technical discussions

« Manan: Feature Generation, PCA, KMeans++ clustering, correlation minimization
selection algorithm, Markovitz optimization, portfolio evaluation (Sharpe ratio,
future returns, risk, VaR, Monte-Carlo weight plots)
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PCA ApproaCh Sector-wise distribution of S&P500 Stocks

Co nsumer Discretionary

Fi anuals

* Novel approach to achieve sector-wise segregation

» Challenges: \
—23D time-series data
—->PCA works on 2D data

« Approach: Condense the time-series data
* Results: >PC1 and PC2 cover ~ 85 percent variance
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Clustering Approach

KMeans Clustering (using K = 11) on PCA transformed data

MEDIAN YEARLY AVG: KMeans Clustering for year = 2013
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LDA Approach

 Linear Discriminant Analysis to reduce dimensions and achieve class
separation

« A supervised way of learning

Accuracy v/s N-tile Samples
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Hierarchical Clustering

1. Decent Performance:
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